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SUMMARY

A numerical method for solving three-dimensional free surface flows is presented. The technique is an
extension of the GENSMAC code for calculating free surface flows in two dimensions. As in GENS-
MAC, the full Navier–Stokes equations are solved by a finite difference method; the fluid surface is
represented by a piecewise linear surface composed of quadrilaterals and triangles containing marker
particles on their vertices; the stress conditions on the free surface are accurately imposed; the conjugate
gradient method is employed for solving the discrete Poisson equation arising from a velocity update; and
an automatic time step routine is used for calculating the time step at every cycle. A program
implementing these features has been interfaced with a solid modelling routine defining the flow domain.
A user-friendly input data file is employed to allow almost any arbitrary three-dimensional shape to be
described. The visualization of the results is performed using computer graphic structures such as phong
shade, flat and parallel surfaces. Results demonstrating the applicability of this new technique for solving
complex free surface flows, such as cavity filling and jet buckling, are presented. Copyright © 2001 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

Fluid flows with free surfaces occur in a large number of natural and technological processes.
Container filling (food industry), injection moulding (plastic and steel industries), ink jet
devices (printing industry) and casting steel and aluminium industries are all examples of free
surface flow problems. Many numerical techniques have been developed over the past 35 years
and indeed today there is renewed activity in this area: a general overview may be obtained
from the recent books of Griebel et al. [1] and Shyy et al. [2].
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The marker-and-cell (MAC) method of Welch et al. [3] represented the first attempt to
simulate unsteady incompressible viscous flows with a free surface. It solved the unsteady
primitive variable Navier–Stokes equations on a uniform Cartesian staggered grid. The
velocity field was predicted by using explicit second-order discretization of the convective and
diffusive terms. The free surface was then adduced from virtual marker particles, which moved
at each time step in accordance with the computed velocity.

This method has subsequently been improved in a series of papers. Firstly, improved
pressure calculations on the free surface were obtained [4–6], and then attention switched to
a more accurate tracking of the free surface. Improved variants of the MAC method include
SMAC [7], SUMMAC [4], ALE [9], SOLA-VOF [6], TUMMAC [8,10,11], GENSMAC [12,13]
and SIMAC [14]. Other recent papers, essentially employing the MAC technology, include
impacting drops [15], second-order interface reconstruction [16], higher-order upwinding
methods [17] and a Lagrangian–Eulerian technique for three-dimensional flows in an arbitrary
domain [18].

Complementing the MAC approach, a number of other methods have been suggested. These
include finite element-type methods [19], Lagrangian [20] and methods using orthogonal
co-ordinates [21,22].

In the last decade most attention has focussed on studying approximate flows with a
material interface and how best to track that interface. (But see also interface ‘capturing’ (e.g.
[23]), where the interface is treated as a region of steep gradient of some quantity. However,
this is more often associated with compressible flow.) In interface tracking, the interface is
considered to be a discontinuous front moving through the grid. Interface tracking methods
may be classified into three types. The first involves finding a piecewise polynomial to
approximate the front. These include boundary integral methods [24,25] and the methods of
Glimm et al. [26], Tryggvason et al. [27,28] and Udaykumar et al. [29].

The second is the so-called level set methods introduced by Osher and Sethian [30] and
encapsulated in two books by Sethian [31,32]. Essentially, the interface is represented by the
level set of some function � and it has the real advantage that the interface normal and
curvature may be readily obtained from formulae. This method, possibly because of its
mathematical appeal, has found wide applications: bubbles and drops [33], Rayleigh–Taylor
instability [34], flow by mean curvature [35], dendritic growth and solidification [36], and
minimal surfaces [37].

The third approach is the volume-of-fluid (VOF) method, which tracks the volume of the
fluid in each cell; for an incompressible fluid conserving the volume is equivalent to conserving
the mass. One of the earliest VOF methods was the SLIC algorithm [38]. Variations on the
VOF method were suggested by Chorin [39] and Hirt and Nichols [40], and it became popular
in a number of codes, namely SOLA-VOF [6], NASA-VOF2D [41], NASA-VOF3D [42],
RIPPLE [43,44] and FLOW3D [45]. However, all these codes employ a crude piecewise
constant approximation to the interface. More recent work has concentrated on higher-order
approximations (e.g. [46]).

Few of the above references deal directly with three-dimensional flow. Clearly FLOW3D
[45] does but this is a commercial code and, as such, tends to be protective about its
technology. Unverdi and Tryggvason [47] describe a front-tracking method that allows them to
simulate bubbles in both two and three dimensions. Beaux and Bannerjee [48] employ the level
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set method to the classical three-dimensional Rayleigh–Taylor instability between two immis-
cible fluids. Ushijima [18] studied sloshing in three dimensions using the arbitrary Lagrangian–
Eulerian (ALE) formulation. Most recently, Glimm et al. [49] set out a systematic approach
consisting of a set of integrated libraries (see also Castelo et al. [50]). This allowed him and his
co-workers to tackle most of the interface problems that arise in computational continuum
mechanics.

This paper is somewhat different in emphasis. It sets out, methodically, to describe the
three-dimensional algorithm in detail. The full discretization is given explicitly with particular
focus on the free surface and how to approximate accurately the stress conditions thereon. It
also describes in detail how to deal with curved surfaces that intersect the rectangular Eulerian
grid. Several container-filling examples are provided, together with the simulation of jet folding
and jet buckling.

2. GOVERNING EQUATIONS

The basic equations governing the flow of an incompressible Newtonian fluid are the
non-dimensional Navier–Stokes equations

�u
�t

+� ·(uu)= −�p+
1

Re
�2u+

1
Fr2 g (1)

and the mass conservation equation

� ·u=0 (2)

where Re=UL/� and Fr=U/�Lg are the associated Reynolds number and Froude number
respectively; U and L are typical velocity and length scales, g is the gravitational constant and
g is the unit gravitational field vector, u= (u, �, w) is the non-dimensional velocity field and p
is the (non-dimensional) pressure. With suitable initial and boundary conditions, Equations (1)
and (2) form a system of partial differential equations for the unknowns u and p.

3. PROCEDURE

To solve Equations (1) and (2) we follow a similar procedure to that of GENSMAC (see Tome
and McKee [12]).

Let us suppose that at a given time, say t0, the velocity field u(x, t0) is known and boundary
conditions for the velocity and pressure are given. To compute the velocity field and the
pressure field at the advanced time t= t0+�t, we proceed as follows:

Step 1: Let p̃(x, t0) be a pressure field that satisfies the correct pressure condition on the free
surface. This pressure field is computed according to the equations approximating the stress
conditions and are given in Section 6.
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Step 2: Calculate the intermediate velocity field, ũ(x, t), from

� ũ
�t

= −� ·(uu)−�p̃+
1

Re
�2u+

1
Fr2 g (3)

with ũ(x, t0)=u(x, t0) using the correct boundary conditions for u(x, t0). Equation (3) is
solved by an explicit finite difference method and the underlying difference equations will be
given in Section 6. It can be shown [13] that ũ(x, t) possesses the correct vorticity at time t.
However, ũ(x, t) does not satisfy � · ũ(x, t)=0. Let

u(x, t)= ũ(x, t)−��(x, t) (4)

with

�2�(x, t)=� · ũ(x, t) (5)

Thus u(x, t) now conserves mass and the vorticity remains unaltered.
Step 3: Solve the Poisson equation (5).
Step 4: Compute the velocity field (4).
Step 5: Compute the pressure. It can be shown [13] that the pressure is given by

p(x, t)= p̃(x, t0)+
�(x, t)

�t
(6)

Thus, we solve the momentum equations explicitly followed by a sparse symmetric system (the
discrete Poisson equation) for the potential function �. For cavity filling problems, the order
of this system is continually increasing (since one only solves for u and p within the bulk fluid).
The fluid surface is represented by a piecewise linear surface composed of triangles and
quadrilaterals having marker particles on their vertices. The particles’ co-ordinates are stored
at each time step and then updated by solving

dx
dt

=u (7)

by Euler’s method. This then provides a particle with its new co-ordinates and thus whether it
moves to a new cell or not, or indeed whether it leaves the bulk fluid.

4. BOUNDARY CONDITIONS

The boundary conditions at the mesh boundary can be of several types, namely no-slip,
free-slip, prescribed inflow, prescribed outflow, continuative outflow. The application of these
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conditions for the three-dimensional case is a direct generalization of the two-dimensional case.
For clarity, we shall present the equations for no-slip and prescribed inflow boundaries.

Let un, um1 and um2 denote the normal and tangential velocities to the boundary respectively.
Then, for a no-slip boundary, we have

un=0, um1=0, um2=0

and for a prescribed inflow

un=Uinf, um1=0, um2=0

respectively. For the Poisson equation we require

��

�n
=0 on rigid boundaries, and

�=0 on the free surface.

In the equations above, subscripts n, m1 and m2 denote normal and two tangential directions
to the boundary respectively.

5. FREE SURFACE STRESS CONDITIONS

Three-dimensional free surface flows are highly dependent on how the stress conditions are
imposed. However, in the literature various techniques have been proposed in which the stress
conditions are replaced by the kinematic condition, while the pressure on the free surface is set
to zero [6,17]. The tangential stresses are usually neglected (e.g. [14]).

The appropriate boundary conditions on the free surface, in the absence of surface tension,
are (see Batchelor [51])

n·��� ·n=0 (8)

m1·��� ·n=0 (9)

m2·��� ·n=0 (10)

where ��� =��� ij is the stress tensor given by

��� ij= −p�ij+
1

Re
��ui

�xj

+
�uj

�xi

n
, i, j=1, 2, 3

and n= (n1, n2, n3) is the local outward unit normal vector to the surface; m1, m2 are local
tangential vectors.
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Equations (8)–(10) represent the appropriate boundary conditions at the free surface of the
fluid. The finite difference approximation to these equations will be given in Section 6.2 by
considering various local surface orientations.

6. BASIC FINITE DIFFERENCE EQUATIONS

In order to solve Equations (3)–(6) we employ the following approach. A staggered grid is
used. A typical cell is shown in Figure 1. The velocity ũ is discretized at u, � and w nodes
respectively.

For instance, if Equation (3) is considered, the discretization is performed as follows: the
time derivative is discretized explicitly while the spatial derivatives are approximated by central
differences. The convective terms are first averaged and then central differences applied.
Details of these approximations can be found in Hirt and Cook [56]. For instance, the
discretized form of the x component of Equation (3) is given by

ũi+1/2, j,k=ui+1/2, j,k−�t
�

ui+1/2, j,k
�ui+3/2, j,k−ui−1/2, j,k

�x
�

+
p̃i+1, j,k− p̃i, j,k

�x
+

1
4�y

((ui+1/2, j,k+ui+1/2, j+1,k)(�i, j+1/2,k+�i+1, j+1/2,k)

− (ui+1/2, j,k+ui+1/2, j−1,k)(�i, j−1/2,k+�i+1, j−1/2,k))+

Figure 1. Typical cell in a GENSMAC3D calculation.
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+
1

4�z
((ui+1/2, j,k+ui+1/2, j,k+1)(wi, j,k+1/2+wi+1, j,k+1/2)

− (ui+1/2, j,k+ui+1/2, j,k−1)(wi, j,k−1/2+wi+1, j,k−1/2))

−
1

Re
�ui−1/2, j,k−2ui+1/2, j,k+ui+3/2, j,k

�x2 +
ui+1/2, j−1,k−2ui+1/2, j,k+ui+1/2, j+1,k

�y2

+
ui+1/2, j,k−1−2ui+1/2, j,k+ui+1/2, j,k+1

�z2

�
−

1
Fr2 gx

n
(11)

The discretized forms of the y and z components of (3) are obtained similarly. The Poisson
equation (5) is discretized at cell centres using the seven-point Laplacian, giving

�i+1, j,k−2�i, j,k+�i−1, j,k

�x2 +
�i, j+1,k−2�i, j,k+�i, j−1,k

�y2 +
�i, j,k+1−2�i, j,k+�i, j,k−1

�z2

=D� i, j,k (12)

where

D� i, j,k=
ũi+1/2, j,k− ũi−1/2, j,k

�x
+

�̃i, j+1/2,k− �̃i, j−1/2,k

�y
+

w̃i, j,k+1/2−w̃i, j,k−1/2

�z

The velocity at the advanced time tn+1 is obtained by discretizing (4) at the respective nodes,
namely

�
�
�
�
�
�
�
�
�

ui+1/2, j,k= ũi+1/2, j,k−
��i+1, j,k−�i, j,k

�x
�

�i, j+1/2,k= �̃i, j+1/2,k−
��i, j+1,k−�i, j,k

�y
�

wi, j,k+1/2=w̃i, j,k+1/2−
��i, j,k+1−�i, j,k

�z
� (13)

Thus, a calculational cycle consists of solving Equations (11)–(13) at each time step.

6.1. Cell flagging

The cells within the mesh can be of several types and a scheme for identifying them, similar to
the two-dimensional case, is employed. The cells within the mesh can be:

� Empty (E)—cells that do not contain fluid
� Full (F)—cells full of fluid. These cells do not have any face contiguous with an Empty cell.
� Surface (S)—cells that contain fluid and have at least one face contiguous with an Empty

cell face. These cells contain the free surface.
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� Boundary (B)—cells that define a rigid boundary. In these cells the no-slip condition is
applied.

� Inflow (I)—cells that define an inflow boundary.

Figure 2 illustrates the cell structure for a two-dimensional slice at a given instant of time. For
clarity, the empty cells are left blank.

6.2. Approximate free surface stress conditions

To apply stress conditions (8)–(10) we extend the ideas presented in GENSMAC [12] as
follows.

Let us suppose that the mesh spacing is small enough so that the free surface can be
approximated by a planar surface. Then (8)–(10) can be approximated by local finite
differences. Three cases are considered.

6.2.1. Planar surface parallel to a co-ordinate axis. A planar surface will be defined to be one
in which the normal vector is in the direction of one of the co-ordinate directions, i.e.
n= (nx, 0, 0) or n= (0, ny, 0) or n= (0, 0, nz). These surfaces are identified by surface cells
having only one face contiguous with an empty cell (see Figure 3).

It can be seen that on such surfaces, Equations (8)–(10) may be written as

Figure 2. A two-dimensional slice indicating the types of cells used in a GENSMAC3D calculation.
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Figure 3. S cells with only the (k+1
2) face contiguous with E cell faces.

p−
2

Re
��u

�x
nx

2 +
�u
�y

ny
2+

�w
�z

nz
2n=0 (14)

1
Re

���u
�x

+
��

�x
�

nx+
���

�z
+

�w
�y
�

ny+
��u

�z
+

�w
�x
�

nz
n

=0 (15)

1
Re

���u
�z

+
�w
�x
�

nx+
��u

�y
+

��

�x
�

ny+
���

�z
+

�w
�y
�

nz
n

=0 (16)

respectively.
These equations can be easily approximated by finite differences. For instance, consider the

surface cell in Figure 4. For this cell we assume that the outward normal vector is pointing to
the E cell, in which case we take n= (0, 0, 1). We observe that when computing the tilde

Figure 4. S cell with the (k+1
2) face contiguous with an E cell face.
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velocities using (3), the velocities at the E cells and the pressure at the S cell are required (see
Figure 4).

These can be obtained as follows. By discretizing the simplified version of (15) at cell
position (i+1

2, j, k+1
2), we have

ui+1/2, j,k+1−ui+1/2, j,k

�z
+

wi+1, j,k+1/2−wi, j,k+1/2

�x
=0 (17)

and applying a similar discretization to (16) at cell position (i, j+1
2, k+1

2) we get

�i, j+1/2,k+1−�i, j+1/2,k

�z
+

wi, j+1,k+1/2−wi, j,k+1/2

�y
=0 (18)

Now, requiring mass conservation (2) for the surface cell we have

ui+1/2, j,k−ui−1/2, j,k

�x
+

�i, j+1/2,k−�i, j−1/2,k

�y
+

wi, j,k+1/2−wi, j,k−1/2

�z
=0 (19)

Equations (17)–(19) provide three equations for the unknowns ui+1/2, j,k+1, �i, j+1/2,k+1 and
wi, j,k+1/2, which can be solved explicitly. From (19) we have

wi, j,k+1/2=wi, j,k−1/2−
�z
�x

(ui+1/2, j,k−ui−1/2, j,k)−
�z
�y

(�i, j+1/2,k−�i, j−1/2,k) (20)

and (17)–(18) give

ui, j,k+1/2=ui+1/2, j,k−
�z
�x

(wi+1, j,k+1/2−wi, j,k+1/2) (21)

�i, j+1/2,k+1=�i, j+1/2,k−
�z
�y

(wi, j+1,k+1/2−wi, j,k+1/2) (22)

respectively.
The pressure p̃i, j,k for the surface cell is then computed using (14) applied at the cell centre

yielding

p̃i, j,k=
2

Re
�wi, j,k+1/2−wi, j,k−1/2

�z
�

(23)

Other configurations of surface cells having only one face contiguous with an empty cell are
treated similarly.
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Figure 5. Example of a 45°-sloped planar surface.

6.2.2. 45°-sloped planar surface. These surfaces are defined to have the local unit normal vector
making 45° with two adjacent co-ordinate axes (see Figure 5). They are identified by S cells
having only two adjacent faces contiguous with E cell faces. On such surfaces we assume the
unit normal vector takes the form

n=
�

�
�2
2

, �
�2

2
, 0
�

or n=
�

�
�2

2
,0, �

�2
2
�

or n=
�

0, �
�2
2

, �
�2
2
�

It can be seen that there are in total 12 different 45°-sloped planar surfaces. The approximation
of the stress condition for one particular case will be given here; the remaining cases are treated
similarly. Details of the equations for each case are given in [52].

Figure 6. S-cell with (k+1
2) and (i+1

2) faces contiguous with E cell faces.
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Let us consider the surface cell in Figure 6. For this cell we take n= (�2/2, 0, �2/2) and the
tangential vectors are taken to be m1= (�2/2, 0, −�2/2) and m2= (0, 1, 0). Introducing
these vectors into stress conditions (8) and (10) yields

p=
1

Re
��u

�x
+

�w
�z

+
�u
�z

+
�w
�x
�

(24)

and

�u
�x

−
�w
�z

=0 (25)

respectively.
As we can see in Figure 6, the values of ui+1/2, j,k and wi, j,k+1/2 at E cell faces are required.

These are obtained by applying (25) and the mass conservation equation (2) at the surface cell
centre, in which case we get

ui+1/2, j,k−ui−1/2, j,k

�x
−

wi, j,k+1/2−wi, j,k−1/2

�z
=0 (26)

and

ui+1/2, j,k−ui−1/2, j,k

�x
+

wi, j,k+1/2−wi, j,k−1/2

�z
= −

��i, j+1/2,k−�i, j−1/2,k

�y
�

(27)

respectively. Solving (26) and (27) for ui+1/2, j,k and wi, j,k+1/2 we obtain

ui+1/2, j,k=ui−1/2, j,k−
1
2

�x
�y

(�i, j+1/2,k−�i, j−1/2,k) (28)

and

wi, j,k+1/2=wi, j,k−1/2−
1
2

�z
�y

(�i, j+1/2,k−�i, j−1/2,k) (29)

Once the velocities at the E cell faces have been computed the pressure at the surface cell is
calculated by applying (24) at the surface cell centre, which gives

p̃i, j,k=
1

Re
�ui+1/2, j,k−ui−1/2, j,k

�x
+

wi, j,k+1/2−wi, j,k−1/2

�z

+
1
2
�ui+1/2, j,k+ui−1/2, j,k−ui+1/2, j,k−1−ui−1/2, j,k−1

�z

+
wi, j,k+1/2+wi, j,k−1/2−wi−1, j,k+1/2−wi−1, j,k−1/2

�x
�n
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Other configurations of S cells having two adjacent faces contiguous with two E cell faces
are treated similarly.

6.2.3. 60°-sloped planar surface. These surfaces are defined to have the local unit vector
making 60° with the co-ordinate axes. They are identified by surface cells having three
adjacent faces contiguous with E cell faces (see Figure 7). For these surfaces the normal
vector takes the form

n=
�

�
�3
3

, �
�3

3
, �

�3
3
�

It can be seen that there are eight possible different positions for these planar surfaces. The
approximating equations for one particular case will be given here; for details of each case
see [52].

Let us consider the surface cell in Figure 8. For this cell we assume the local unit vectors
take the form

n=
��3

3
,

�3
3

,
�3

3
�

, m1=
�

0,
�2

2
, −

�2
2
�

, m2=
�

−2
�6
6

,
�6
6

,
�6
6
�

Introducing n, m1 and m2 into (8)–(10) we obtain a set of three equations. Adding (9) to
(10) yields

−4
�u
�x

+4
��

�y
−2

��u
�z

+
�w
�x
�

+2
���

�z
+

�w
�y
�

=0 (30)

Figure 7. An example of a 60°-planar surface.
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Figure 8. S cell with the (i+1
2) and ( j+1

2) and (k+1
2) faces contiguous with E cell faces.

It can be seen that when calculating the tilde velocities through (3) the values of ui+1/2, j,k,
�i, j+1/2,k and wi, j,k+1/2 are required. They can be obtained by applying finite differences to (9),
(30) and the mass conservation equation (2) as follows. First, applying (3) at the surface cell
centre we have

ui+1/2, j,k−ui−1/2, j,k

�x
+

�i, j+1/2,k−�i, j−1/2,k

�y
+

wi, j,k+1/2−wi, j,k−1/2

�z
=0

which can be written as

ui+1/2, j,k+
�x
�y

�i, j+1/2,k+
�x
�z

wi, j,k+1/2=b1 (31)

where

b1=ui−1/2, j,k+
�x
�y

�i, j−1/2,k+
�x
�z

wi, j,k−1/2

Now, applying (9) at the surface cell centre gives

2
��i, j+1/2,k−�i, j−1/2,k

�y
�

−2
�wi, j,k+1/2−wi, j,k−1/2

�z
�

+
1
2
�ui+1/2, j,k+ui−1/2, j,k−ui+1/2, j−1,k−ui−1/2, j−1,k

�y

+
�i, j+1/2,k+�i, j−1/2,k−�i−1, j+1/2,k−�i−1, j−1/2,k

�x
�
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−
1
2
�ui+1/2, j,k+ui−1/2, j,k−ui+1/2, j,k−1−ui−1/2, j,k−1

�z

+
wi, j,k+1/2+wi, j,k−1/2−wi−1, j,k+1/2−wi−1, j,k−1/2

�x
�

=0

which can be rewritten as

�
1−

�y
�z
�

ui+1/2, j,k+
�

4+
�y
�x
�

�i, j+1/2,k−
�

4
�y
�z

+
�y
�x
�

wi, j,k+1/2=b2

where

b2= −ui−1/2, j,k+ui+1/2, j−1,k+ui−1/2, j−1,k+
��y

�z
�

(ui−1/2, j,k−ui+1/2, j,k−1−ui−1/2, j,k−1)

+4�i, j−1/2,k−
��y

�x
�

(�i, j−1/2,k−�i−1, j+1/2,k−�i−1, j−1/2,k)−4
��y

�z
�

wi, j,k−1/2

+
��y

�x
�

(wi, j,k−1/2−wi−1, j,k+1/2−wi−1, j,k−1/2)

Similarly, discretizing (30) at surface cell position (i, j, k), we obtain

−4
�ui+1/2, j,k−ui−1/2, j,k

�x
�

+4
��i, j+1/2,k−�i, j−1/2,k

�y
�

−
�ui+1/2, j,k+ui−1/2, j,k−ui+1/2, j,k−1−ui−1/2, j,k−1

�z

+
wi, j,k+1/2+wi, j,k−1/2−wi−1, j,k+1/2−wi−1, j,k−1/2

�x
�

+
��i, j+1/2,k+�i, j−1/2,k−�i, j+1/2,k−1−�i, j−1/2,k−1

�z

+
wi, j,k+1/2+wi, j,k−1/2−wi, j−1,k+1/2−wi, j−1,k−1/2

�y
�

=0

which gives

−
�

4+
�x
�z
�

ui+1/2, j,k+
�

4
�x
�y

+
�x
�z
�

�i, j+1/2,k+
��x

�y
−1

�
wi, j,k+1/2=b3 (33)

where
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M.F. TOMÉ ET AL.762

b3= −4ui−1/2, j,k+
��x

�z
�

(ui−1/2, j,k−ui+1/2, j,k−1−ui−1/2, j,k−1)+4
�x
�y

�i, j−1/2,k

−
��x

�z
�

(�i, j−1/2,k−�i, j+1/2,k−1−�i, j−1/2,k−1)+wi, j,k−1/2−wi−1, j,k+1/2−wi−1, j,k−1/2

−
��x

�y
�

(wi, j,k−1/2−wi, j−1,k+1/2−wi, j−1,k−1/2)

Equations (31)–(33) provide a linear system for the unknowns ui+1/2, j,k, �i, j+1/2,k and wi, j,k+1/2,
which in matrix form is given by

�
�
�
�
�
�
�
�
�

1
�x
�y

�x
�z�

1−
�y
�z
� �

4+
�y
�x
�

−
�

4
�y
�z

+
�y
�x
�

−
�

4+
�x
�z
� �

4
�x
�y

+
�x
�z
� �

−1+
�x
�y
�

�
�
�
�
�
�
�
�
	

�
�
�
�
�

ui+1/2, j,k

�i, j+1/2,k

wi, j,k+1/2

�
�
�
�
	

=

�
�
�
�
�

b1

b2

b3

�
�
�
�
	

(34)

System (34) can be easily solved by Gaussian elimination. Once the values of ui+1/2, j,k, �i, j+1/2,k

and wi, j,k+1/2 have been computed, the pressure follows from (8) applied at the surface cell
centre, giving

p̃i, j,k=
1

3Re
��ui+1/2, j,k+ui−1/2, j,k−ui+1/2, j−1,k−ui−1/2, j−1,k

�y

+
�i, j+1/2,k+�i, j−1/2,k−�i−1, j+1/2,k−�i−1, j−1/2,k

�x
�

+
�ui+1/2, j,k+ui−1/2, j,k−ui+1/2, j,k−1−ui−1/2, j,k−1

�z

+
wi, j,k+1/2+wi, j,k−1/2−wi−1, j,k+1/2−wi−1, j,k−1/2

�x
�

+
��i, j+1/2,k+�i, j−1/2,k−�i, j+1/2,k−1−�i, j−1/2,k−1

�z

+
wi, j,k+1/2+wi, j,k−1/2−wi, j−1,k+1/2−wi, j−1,k−1/2

�y
�n

The remaining configurations of surface cells having three adjacent faces contiguous with
empty cells are treated similarly. For details of each case see Tomé et al. [52].
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6.2.4. Surface cells ha�ing two opposite faces contiguous with empty cell faces. These cells do not
provide enough information to obtain an approximation to the unit normal vector. In these
cells we set the pressure equal to zero and adjust one or more velocities so that mass is
conserved. For instance, the velocities ui+1/2, j,k and ui−1/2, j,k on the surface cell faces
contiguous with the empty cell faces shown in Figure 9(a) are set equal to

ui+1/2, j,k= −0.5�x
��i, j+1/2,k−�i, j−1/2,k

�y
+

wi, j,k+1/2−wi, j,k−1/2

�z
n

,

ui−1/2, j,k= −u1+1/2, j,k

The pressure pi, j,k is set equal to zero. On the other hand, if we consider the surface cell in
Figure 9(b), then the velocities on the faces of the empty cells are set equal to

ui+1/2, j,k=ui−1/2, j,k, wi, j,k+1/2=wi, j,k−1/2−
�z
�y

(�i, j+1/2,k−�i, j−1/2,k)

The value of ui−1/2, j,k remains unaltered. For other combinations of surface cells having two
opposite faces contiguous with empty cell faces, the treatment is similar. Fortunately, during
the calculation of a problem, these cells do not occur frequently. In any case, it is always
possible to minimize their appearance by employing a finer mesh to smooth out the high
curvatures present in the calculation.

6.3. Boundary conditions on cur�ed surfaces

When the discretized Navier–Stokes equation (3) is applied at nodes adjacent to a boundary
cell (B cell), velocities u, � and w on the boundary cell faces are required. If no-slip conditions
are imposed on the boundary surface these values can be estimated in terms of function values
at internal nodes and boundary values by linear interpolation. The definition of a B cell
follows the same ideas embodied in GENSMAC [12]. It is supposed that the mesh spacing is
small so that the curved boundary will cut the cell faces according to three cases:

Figure 9. S cells having two opposite faces contiguous with E cell faces.
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� 1-axis surface: These surfaces are assumed to cut the B cell passing through only one of its
axes (see Figure 10(a)). These surfaces are identified by B cells having only one face
contiguous with an interior cell.

� 2-axes surface: A 2-axes surface is defined to be one that cuts a B cell passing through two
of its co-ordinate axes (see Figure 10(b)). These surfaces are identified by B-cells having
only two adjacent faces contiguous with interior cells.

� 3-axes surface: These surfaces are defined to cut the three co-ordinate axes of the cell (see
Figure 10(c)). These surfaces are identified by B cells having three adjacent faces contiguous
with interior cells.

It can be seen that the boundary cells can have only one, two or three faces contiguous with
interior cells. More specifically, there are six possible configurations of B cells with only one
face contiguous with an interior cell, 12 cases of B cells with two adjacent faces contiguous
with interior cells and eight cases of B cells having three adjacent faces contiguous with interior
cells. In this section we give the equations for calculating the velocities on the boundary cell
faces by considering various B cell configurations as follows

6.3.1. B cells ha�ing only one face contiguous with an interior cell. For these cells we compute
the velocities on the B cell faces in terms of the velocities of the adjacent interior cell and the
velocity at the boundary by using linear interpolation. Let us consider the B cell in Figure 11.

The velocities ui+1/2, j,k, �i, j+1/2,k and wi, j,k+1/2 are required when computing the tilde
velocities through (3). These can be obtained by employing linear interpolation between the
velocity on the interior cell and the boundary velocity as follows: Consider Figure 11 for the
calculation of ui+1/2, j,k. Let P0= (xi+1/2, yj, zk), P1= (xi+3/2, yj, zk) and Pb= (xub, yj, zk), where
xub denotes the intersection point between the line defined by P0 and P1 and the boundary
surface, namely, xub is calculated from

f(xub, yj, zk)=0

Figure 10. Examples of 1-, 2- and 3-axes surfaces.
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Figure 11. B cell with the (i+1
2) face contiguous with an interior cell face.

where f(x, y, z) is the equation describing the local boundary. Thus, linear interpolation
between Pb and P1 gives

u(x)=
x−xi+3/2

xub−xi+3/2

ub+
x−xub

xi+3/2−xub

ui+3/2, j,k

so that an approximation for ui+1/2, j,k is obtained by

ui+1/2, j,k=
xi+1/2−xub

xi+3/2−xub

ui+3/2, j,k−
�x

xub−xi+3/2

ub (35)

where ub is the boundary velocity in the x-direction (of course ub=0 if the no-slip condition
is to hold on this boundary). The other two velocities on the B cell faces are obtained similarly
and are given by

�i, j+1/2,k=
xi−x�b

xi+1−x�b

�i+1, j+1/2,k−
�x

x�b−xi+1

�b (36)

wi, j,k+1/2=
xi−xwb

xi+1−xwb

wi+1, j,k+1/2−
�x

xwb−xi+1

wb (37)

where x�b and xwb are obtained from

f(x�b, yj+1/2, zk)=0

f(xwb, yj, zk+1/2)=0

respectively, and �b and wb are the boundary velocities in the y- and z-directions respectively.
Other configurations of B cells having only one face contiguous with an interior cell are treated
similarly. Details of each case can be found in [52].
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6.3.2. B cells ha�ing two adjacent faces contiguous with interior cells. The 12 configurations of
B cells having only two adjacent faces contiguous with interior cells will be treated in a similar
way as for B cells having only one face contiguous with an interior cell. Each of these cases
will be reduced to linear interpolation in one direction and then the equations derived in
Section 6.3.1 will be used to obtain approximations for the velocities on the B cell faces.

As we can see from Figure 12, in order to obtain an approximation for ui+1/2, j,k one may
employ linear interpolation in the x-direction by using ui+3/2, j,k and ub or interpolate in the
z-direction by using ui+1/2, j,k+1 and ub. To choose which direction is more appropriate to
perform the interpolation we proceed as follows.

Consider Figure 12 for the calculation of ui+1/2, j,k. Let P0= (xi+1/2, yj, zk), P1x= (xi+3/2, yj,
zk), Pbx= (xub, yj, zk), P1z= (xi+1/2, yj, zk+1) and Pbz= (xi+1/2, yj, zub), where xub is the
intersection point between the line defined by P0 and P1x and the boundary surface; zub is the
intersection point on the line defined by P0 and P1z and the boundary surface. The values of
xub and zub can be computed from

f(xub, yj, zk)=0

and

f(xi+1/2, yj, zub)=0

Figure 12. B cell with the (i+1
2) and (k+1

2) faces contiguous with interior cell faces.
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respectively. Once xub and zub have been obtained we can calculate the distances

dxu= �xub−xi+1/2� and dzu= �zub−zk �

To choose the direction for interpolation we take the closest point to P0. For instance, if
dxu�dzu we take Pbx and interpolate between Pbx and P1x. In this case, it can be easily verified
that ui+1/2, j,k is given by

ui+1/2, j,k=
xi+1/2−xub

xi+3/2−xub

ui+3/2, j,k−
�x

xub−xi+3/2

ub (38)

On the other hand, if dxu�dzu then we choose Pbz and interpolate between Pbz and P1z, which
gives

ui+1/2, j,k=
zk−zub

zk+1−zub

ui+1/2, j,k+1−
�z

zub−zk+1

ub (39)

For the other two velocities, �i, j+1/2,k and wi, j,k+1/2, the same criterion is applied. For instance,
to obtain an approximation for �i, j+1/2,k we compute the intersection points x�b and z�b from

f(x�b, yj+1/2, z)=0

and

f(xi, yj+1/2, z�b)=0

and calculate the distances

dx�= �x�b−xi � and dz�= �z�b−zk �

Finally, we check which is the smallest distance and if dx��dz� we obtain �i, j+1/2,k by
interpolating between �i+1, j+1/2,k and �b, which gives

�i, j+1/2,k=
xi−x�b

xi+1−x�b

�i+1, j+1/2,k−
�x

x�b−xi+1

�b (40)

Otherwise, we interpolate in the z-direction, which yields

�i, j+1/2,k=
zk−z�b

zk+1−z�b

�i, j+1/2,k+1−
�z

z�b−zk+1

�b (41)

Similarly, in order to calculate wi, j,k+1/2 we first compute the intersection points xwb and zwb

from
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f(xwb, yj, zk+1/2)=0

and

f(xi, yj, zwb)=0

and calculate the distances

dxw= �xwb−xi � and dzw= �zwb−zk �

If dxw�dzw then interpolating in the x-direction leads to

wi, j,k+1/2=
xi−xwb

xi+1−xwb

wi+1, j,k+1/2−
�x

xwb−xi+1

wb (42)

otherwise we interpolate in the z-direction, which gives

wi, j,k+1/2=
zk−zwb

zk+1−zwb

wi, j,k+3/2−
�z

zwb−zk+1

wb (43)

The remaining configurations of B cells having two adjacent faces contiguous with empty cell
faces are treated similarly. Details for each configuration is given in [52].

6.3.3. B cells ha�ing three adjacent faces contiguous with interior cells. Here we have eight
different configurations of B cells having three adjacent faces contiguous with interior cells.
Each case is treated in a similar manner as that employed for B cells with two adjacent faces
contiguous with interior cells (see Figure 13).

An approximation for ui+1/2, j,k may be obtained by employing linear interpolation in the
x-direction using ui+3/2, j,k and ub or interpolation in the y-direction using ui+1/2, j−1,k and ub

or interpolation in the z-direction using ui+1/2, j,k+1 and ub. To select which direction is the
most acceptable on which to perform the interpolation we adopt the same strategy used in
Section 6.3.2.

Let us consider Figure 13 for the calculation of ui+1/2, j,k. Let P0= (xi+1/2, yj, zk), P1x=
(xi+3/2, yj, zk), Pbx= (xub, yj, zk), P1y= (xi+1/2, yj−1, zk) and Pby= (xi+1/2, yub, zk), P1z=
(xi+1/2, yj, zk+1) and Pbz= (xi+1/2, yj, zub), where xub is the intersection point between the line
defined by P0 and P1x and the boundary surface; yub is the intersection point on the line
defined by P0 and P1y and the boundary surface; and zub is the intersection point on the line
defined by P0 and P1z and the boundary surface. The values of xub, yub and zub can be
computed from

f(xub, yj, zk)=0

and

f(xi+1/2, yj, zub)=0

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 37: 747–796



UNSTEADY 3D FREE SURFACE FLOWS 769

Figure 13. B cell with the (i+1
2), ( j−1

2) and (k+1
2) faces contiguous with interior cell faces.

f(xi+1/2, yub, zk)=0

respectively. Once xub, yub and zub have been obtained we can calculate the distances

dxu= �xub−xi+1/2�, dyu= �yub−yj �, dzu= �zub−zk �

To choose the direction for interpolation we take the closest point to P0, namely, let

dmin=min(dxu, dyu, dzu)

Thus, if dmin=dxu then we interpolate between Pbx and P1x. In this case, ui+1/2, j,k is given by

ui+1/2, j,k=
xi+1/2−xub

xi+3/2−xub

ui+3/2, j,k−
�x

xub−xi+3/2

ub

On the other hand, if dmin=dyu then we interpolate between Pby and P1y, which gives

ui+1/2, j,k=
yj−yub

yj−1−yub

ui+1/2, j−1,k−
�y

yub−yj−1

ub

Otherwise dmin=dzu, in which case we interpolate between Pbz and P1z, giving
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ui+1/2, j,k=
zk−zub

zk+1−zub

ui+1/2, j,k+1−
�z

zub−zk+1

ub

The other two velocities, �i, j−1/2,k and wi, j,k+1/2, are obtained similarly. For instance, to obtain
an approximation for �i, j−1/2,k we compute the intersection points x�b, y�b and z�b from

f(x�b, yj−1/2, zk)=0

f(xi, y�b, zk)=0

f(xi, yj−1/2, z�b)=0

and calculate the distances

dx�= �x�b−xi �, dy�= �y�b−yj �, dz�= �z�b−zk �

Finally, we check which is the smallest distance and compute �i, j+1/2,k. For instance, if
dmin=dx� we interpolate between �i+1, j+1/2,k and �b, which gives

�i, j−1/2,k=
xi−x�b

xi+1−x�b

�i+1, j+1/2,k−
�x

x�b−xi+1

�b

If, however, dmin=dyu we interpolate in the y-direction, which yields

�i, j−1/2,k=
yj−1/2−y�b

yj−3/2−y�b

�i, j−3/2,k−
�y

y�b−yj−3/2

�b

Otherwise, we interpolate in the z-direction yielding

�i, j−1/2,k=
zk−z�b

zk+1−z�b

�i, j−1/2,k+1−
�z

z�b−zk+1

�b

Similarly, in order to calculate wi, j,k+1/2 we first compute the intersection points xwb, ywb and
zwb from

f(xwb, yj, zk+1/2)=0

f(xi, ywb, zk+1/2)=0

f(xi, yj, zwb)=0

and compute the distances

dxw= �xwb−xi �, dyw= �ywb−yj �, dzw= �zwb−zk �
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and calculate dmin=min(dxu, dyu, dzu). If dmin=dxw then interpolating in the x-direction leads
to

wi, j,k+1/2=
xi−xwb

xi+1−xwb

wi+1, j,k+1/2−
�x

xwb−xi+1

wb

If dmin=dyw then interpolating in the y-direction gives

wi, j,k+1/2=
yj−ywb

yj−1−ywb

wi, j+1,k+1/2−
�y

ywb−yj−1

wb

otherwise we interpolate in the z-direction, which yields

wi, j,k+1/2=
zk+1/2−zwb

zk+3/2−zwb

wi, j,k+3/2−
�z

zwb−zk+3/2

wb

The other configurations of B cells having three adjacent faces contiguous with interior cells
are treated similarly. For details of each case see [52].

6.4. Free surface mo�ement

One of the main challenges in generalizing the ideas of the two-dimensional code, GENSMAC,
to three dimensions was in dealing with the free surface. This is because in two dimensions
virtual particles were used to represent the fluid, and this technique cannot be carried over to
three dimensions due to the very large number of particles needed to represent the fluid to
photographic precision. We overcame this problem by introducing a new procedure, whereby
marker particles were employed on the fluid surface only [55]. This brought huge savings in
storage and computing time, making the extension of GENSMAC feasible for solving full
three-dimensional problems efficiently. In three dimensions it is desirable to employ solid
modelling techniques, whereby the fluid is modelled by a B-Rep structure [53]. The fluid
surface is represented by a piecewise linear surface composed of quadrilaterals and triangles
containing marker particles on their vertices. A procedure for inserting and deleting particles
on the free surface is employed. More details on the free surface treatment can be found in
[50]. At the end of the calculational cycle, these vertices are moved to a new position according
to

xn+1=xn+up�tn+1

where xn is the position of the particle under consideration. The particle velocity up is found
by performing a tri-linear approximation using the eight nearest velocities.

6.5. Time stepping procedure

A time stepping procedure for computing the appropriate time step size for every cycle is
employed. It is based on the stability conditions (written in non-dimensional form)
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�t�
�x
��u�� (44)

�t�
�x2�y2�z2

�x2�y2+�x2�z2+�y2�z2

Re
2

(45)

where the first inequality is understood componentwise. The restrictions in (44) require that
no particles should cross more than one cell boundary in a given time interval; this is an
accuracy requirement. The second restriction (45) comes from the explicit discretization of
the Navier–Stokes equations [55] and is essentially a local von Neumann stability restric-
tion. Since we are primarily concerned with low-Reynolds number flows (0�Re�10) it is
anticipated that (45) would be the more restrictive condition. To implement these equations
we employ similar ideas to that of GENSMAC.

Let �tn be the time step employed in the previous calculational cycle and define

�tvisc=
1
2

�x2�y2�z2

�x2�y2+�x2�z2+�y2�z2

Re
2

(46)

�tu=�1 ·
1
2

·
�x

�ũmax�
(47)

�t�=�2 ·
1
2

·
�x

��̃max�
(48)

�tw=�3 ·
1
2

·
�x

�w̃max�
(49)

where �ũmax�, ��̃max� and �w̃max� are maximum of the tilde velocities computed through (3) and
0��i�1, i=1, 2, 3. The extra factor of 0.5 in (47)–(49) has been introduced as a
conservative measure to allow for the fact that only local stability analyses have been
performed. The time step employed in the calculation is then chosen to be

�tn+1=� ·min(�tvisc, �tu, �t�, �tw) (50)

where 0���1.
The factor � in (50) is necessary since the values of �umax

n+1�, ��max
n+1� and �wmax

n+1� at the
beginning of the calculational cycle are not known. It is computationally more efficient to
use the tilde velocities with the factor � acting as a compensating measure for not using
umax

n+1, �max
n+1 and wmax

n+1. However, if �tu, �t� or �tw are less than �tn, then the tilde velocities
are recalculated and the time step is revised. This time stepping procedure has proved to be
an efficient automatic means of adjusting the time step size.

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 37: 747–796



UNSTEADY 3D FREE SURFACE FLOWS 773

6.6. The Poisson sol�er

At every calculational cycle we have to solve the discrete Poisson equation (12) subject to
Dirichlet and Neumann boundary conditions. For three-dimensional problems this can be
extremely time consuming and the choice of an appropriate algorithm is vital. For two-
dimensional problems, the conjugate gradient method proved to be the best solver, only taking
a few iterations to converge to a prescribed tolerance. This is due to the small time steps
employed in the calculational cycle, which make the solution from the previous calculational
cycle a good approximation for the solution of (12). In this work we have used the same
conjugate gradient routine as that employed in GENSMAC [12]. For this it was necessary to
write a routine for assembling the matrix and a routine to perform the product of this matrix
with a given vector. For details of matrix assembly see Tomé and McKee [12].

7. THE FREEFLOW-3D CODE AND CALCULATIONAL EXAMPLES

The finite difference equations described in this paper have been implemented into a computer
code called Freeflow-3D. The code has been designed in three distinct modules: Modflow-3D,
Simflow-3D and Visflow-3D. The module Modflow-3D is a user-friendly interactive system for
specifying the flow domain and the initial fluid in the domain. It also specifies the geometric
elements, such as containers, injection nozzles, and sets the initial velocity and pressure within
the fluid. The geometric elements currently implemented are rectangular containers and
rectangular inflows. For details of these structures see [50]. The module Simflow-3D is the
main part of Freeflow-3D. It implements the governing equations and the boundary conditions
presented in the previous Sections. Visflow-3D is an interactive system for the visualization of
the output of Simflow-3D using visualization techniques. It permits viewing the geometry (e.g.
containers, inflows) as well as viewing the flow properties (velocity and pressure). In addition
to the viewing facilities, Visflow-3D can view cuts of the objects by planes parallel to one of
the main axes and flow properties (pressure, velocity) can be viewed in three dimensions using
rendering techniques by considering the flow property as a texture, or they can be viewed by
contour lines. The three modules were constructed using solid modelling techniques [53].

The three modules were written using the C language under the operating system UNIX.
The graphic interfaces to Modflow-3D and Visflow-3D use the windowing system Xview [54]
under X-windows. Details about the Freeflow-3D system can be found in [50]. In what follows
we present some calculations performed by the Freeflow-3D code.

7.1. Calculational examples and applications

The computer code Freeflow-3D has been applied to simulate three-dimensional free surface
flows that are common to several industrial applications, such as container filling, jet buckling
and injection moulding processes. At present, the model can only cope with isothermal
incompressible Newtonian flows; the extension of this technique to non-Newtonian (power-law
and Cross models) free surface flows is under development. In what follows we present some
calculational examples that demonstrates the capability of the Freeflow-3D code in simulating
complicated three-dimensional free surface flows.
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7.1.1. Simulation of container filling. Many industries are concerned with the automatic and
fast filling of containers with a variety of fluid-product type having different rheological
properties (e.g. margarine, yoghurt, toothpaste, etc.) and this can lead to various problems.
For instance, insufficient understanding of the dynamics of a filling process can lead to spillage
through splashing or sloshing. To illustrate the applicability of Freeflow-3D we have applied
the code to simulate the filling process of the rectangular tub (see Figure 14). The following
input data were used:

� Domain dimensions: 54 mm×76 mm×60 mm;
� Mesh size: 54×76×60 cells (�x=�y=�z=1 mm);
� Viscosity (�): 0.0005 m2 s−1;
� Length reference value (L): 4 mm (jet width in the x-direction);
� Velocity reference value (U): 1 m s−1 (fluid velocity at the nozzle);
� Reynolds number (Re=UL/�): 8.0;
� Froude number (Fr=U/�Lg): 5.0482;
� Container dimensions: L1=76 mm, L2=54 mm, L3=52 mm with wall thickness 2 mm

(see Figure 14);
� Nozzle dimensions: 4 mm×50 mm×6 mm;
� Height of nozzle (H): 50 mm (height of the nozzle to the bottom of the container);

Figure 14. Rectangular container.
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Figure 15. Trapezoidal container.

� Time-step factors: �=0.5, �1 0.8, �2=0.8, �3=0.8;
� Convergence criteria for the Poisson equation: EPS=10−6

� Gravity was taken to act in the z-direction with gz= −9.81 m s−2.

Figure 16 displays several snapshots taken from this run at different times.
To further illustrate the use of Freeflow-3D in container filling problems, we applied the

code to simulate the filling of a cubic container. The following data were used:

� Domain dimensions: 46 mm×46 mm×60 mm;
� Mesh size: 46×46×60 cells (�x=�y=�z=1 mm);
� Viscosity (�): 0.001 m2 s−1;
� Length reference value (L): 10 mm (jet width in the x-direction);
� Velocity reference value (U): 1 m s−1 (fluid velocity at the nozzle);
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� Reynolds number (Re=UL/�): 10;
� Froude number (Fr=U/�Lg): 3.1926;
� Container dimensions: L1=46 mm, L2=46 mm, L3 43 mm with wall thickness 3 mm (see

Figure 14);

Figure 16. Simulation of the filling process of a rectangular container. Fluid flow visualization at times
((U/L)/t): (a) 34.375; (b) 46.875; (c) 65.625; (d) 78.125; (e) 93.750; (f) 125.0.
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Plate 1. Pressure and velocity contour plots of the cubic container simulation at time t=60. (a) Pressure
on the fluid surface, (b) u velocity, (c) � velocity, (d) w velocity.
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� Nozzle dimensions: 10 mm×10 mm×6 mm;
� Height of nozzle (H): 50 mm (distance of the nozzle to the bottom of the container);
� Time-step factors: �=0.5, �1=0.8, �2=0.8, �3=0.8;
� Convergence criteria for the Poisson equation: EPS=10−6

� Gravity was taken to act in the z-direction with gz= −9.81 m s−2.

Figure 17 displays several snapshots taken from this run at different times. Plate 1 displays the
pressure and the velocity contour plots at time t=0.60 s.

Figure 17. Simulation of the filling process of a cubic container. Fluid flow visualization at times
((U/L)t): (a) 5; (b) 10; (c) 15; (d) 20; (e) 25; (f) 40; (g) 50 (h) 60.
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Figure 17 (Continued)

To demonstrate the capability of the technique presented in this paper to deal with
non-rectangular domains we present a calculation that simulates the filling behaviour of the
trapezoidal container. We consider the trapezoidal container shown in Figure 15 and simulate
the filling process using a rectangular nozzle. The following input data were employed:

� Domain dimensions: 8 cm×12 cm×7 cm;
� Mesh size: 80×120×70 cells (�x=�y=�z=1 mm);
� Viscosity (�): 0.0016 m2 s−1;
� Length reference value (L): 12 mm (jet width in the x-direction);
� Velocity reference value (U): 1 m s−1 (fluid velocity at the nozzle);
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� Reynolds number (Re=UL/�): 7.5;
� Froude number (Fr=U/�Lg): 2.9146;
� Container dimensions: L1=12 cm, L2=6 cm, L3=6 cm and L4=0.1 cm, with wall

thickness 3 mm (see Figure 15);
� Nozzle dimensions: 4 mm×80 mm×10 mm;
� Height of nozzle (H): 6 cm (distance of the nozzle to the bottom of container).
� Time-step factors: �=0.5, �1=0.8, �2=0.8, �3=0.8;
� Convergence criteria for the Poisson equation: EPS=10−6;
� Gravity was taken to act in the z-direction with gz= −9.81 m s−2.

Figure 18 displays a series of snapshots taken during this run.

7.2. Simulation of jet buckling: planar and three-dimensional jets

An every day example of jet buckling is honey from a spoon flowing back into its jar. This
problem has been studied by various investigators, but a complete mathematical theory
explaining this buckling instability has not been presented yet. However, Cruickshank [57] (see
also Tomé and McKee [58]) has performed a series of experiments on planar and three-
dimensional jets and has found experimentally that a planar jet will buckle if the following
conditions are satisfied

Re�0.56 and
H
D

�10

while for an axisymmetric jet to buckle the requirements are

Re�1.2 and
H
D

�7.2

where H is the height of the inlet jet to the flat surface and D is the initial jet diameter.
To demonstrate that the technique presented in this paper can cope with complex three-

dimensional free surface flows possessing arbitrary free surface configuration, we simulated
both planar and three-dimensional jet buckling. The following example simulates the flow of
a very viscous planar jet into a flat surface. The values of the various input parameters
involved in the simulation are:

� Domain dimensions: 50 mm×120 mm×100 mm;
� Mesh size: 50×120×100 cells (�x=�y=�z=1 mm);
� Viscosity (�): 0.004 m2 s−1;
� Length reference value (L): 4 mm (initial jet width);
� Velocity reference value (U): 0.5 m s−1 (fluid velocity at the nozzle);
� Reynolds number (Re=UL/�): 0.5;
� Froude number (Fr=U/�Lg): 2.5241;
� Plate dimensions: 50 mm×120 mm×2 mm with wall thickness 2 mm;
� Nozzle dimensions: 4 mm×40 mm×1 mm;
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Figure 18. Simulation of the filling process of a trapezoidal container. Fluid flow visualization at times
((U/L)t): (a) 4.167; (b) 6.250; (c) 8.333; (d) 10.417; (e) 16.667; (f) 22.917.
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� Height of nozzle (H): 100 mm (distance of the nozzle to the flat surface);
� Time-step factors: �=0.5, �1=0.8, �2=0.8, �3=0.8;
� Convergence criteria for the Poisson equation: EPS=10−6

� Gravity was taken to act in the z-direction with gz= −9.81 m s−2.

The Freeflow-3D code was run with the input data above on a SparcStation Ultra 2. The
convergence criteria for the conjugate gradient routine was set to 10−6 and the number of
iterations taken was usually two per cycle; occasionally, the conjugate gradient took over 10
iterations to satisfy the convergence criteria. The complete calculation took 61500 time steps
with a constant time step size of �t=0.000001 (in seconds).

Figure 19 displays several snapshots of the fluid flow at different times.
The following example simulates the flow of a viscous three-dimensional jet onto a flat

surface. The values of the various parameters involved in the simulation are:

� Domain dimensions: 6 cm×6 cm×12 cm;
� Mesh size: 60×60×120 cells (�x=�y=�z=1 mm);
� Viscosity (�): 0.008 m2 s−1;
� Length reference value (L): 8 mm (initial jet width);
� Velocity reference value (U): 0.5 m s−1 (fluid velocity at the nozzle);
� Reynolds number (Re=UL/�): 0.5;
� Froude number (Fr=U/�Lg): 1.785;
� Cube-container dimensions: 60 mm×60 mm×3 mm with wall thickness 2 mm;
� Nozzle dimensions: 8 mm×8 mm×6 mm;
� Height of nozzle (H): 11 cm (distance of the nozzle to the bottom of container).
� Time-step factors: �=0.5, �1=0.8, �2=0.8, �3=0.8;
� Convergence criteria for the Poisson equation: EPS=10−6

� Gravity was taken to act in the z-direction with gz= −9.81 m s−2.

Figure 20 displays a series of snapshots of the flow. They show all the objects which are
involved (container, inflow and fluid).

7.3. Discussion of results

We begin this section with a detailed discussion of quantitative numerical results obtained from
the simulations. In fact, from these simulations a great amount of quantitative information can
be extracted. Initially we present a detailed description of the flow simulation for the case of
the cubic container of Re=10 shown in Figure 17.

Figure 21 has the purpose of highlighting the geometric properties of the flow as a function
of time, namely total volume (vol(t)), free-surface area (s(t)) (see Figure 21(a) and (c),
respectively). We also illustrate the relative volume error (evol(t)) and memory requirements
(Mem(t)) (see Figure 21(b) and (d), respectively).

The total volume can be analytically computed, and a comparison with the numerical results
is presented in Figure 21(a), showing a very good agreement between those quantities.
Additionally, Figure 21(b) shows the computed relative error, which is always smaller than 0.8
per cent. This non-zero (although small) error is consistent with the fact that the divergence field
is zero at cell centres, but is not necessarily so away from there, causing in general a small fluid
volume conservation error at the surface.
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Figure 19. Simulation of a planar jet buckling at times ((U/L)t): (a) 21.875; (b) 25.000; (c) 28.125;
(d) 31.250; (e) 37.500; (f) 43.750.
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Figure 20. Simulation of jet buckling at different times ((U/L)t): (a) 18.750; (b) 23.437; (c) 28.125;
(d) 31.250; (e) 34.375; (f) 37.500; (g) 42.187; (h) 46.875.

Comparison between Figure 21(c) and (d) shows that the required memory grows roughly
proportionally to surface area, as might be expected, since particles are inserted and deleted in
such a way that the spacing between particles is kept between positive bounds.

A quantitative account of the flow field is given by the contour plots of pressure P, and
velocity components w, and � at the plane x=2 (passing through the centre of the box), at two
times, t=20 and t=40, as shown in Figure 22. The contour plots are shown together with a
cut of the free surface in the same plane and at the same times as the contours.

The pressure contours, in Figure 22(a) and (b), show that the region of impact of the jet is
a region of high pressure (which is due to the intense deceleration of the flow). This is
particularly so for the case of the earlier time (t=20). In comparison, at a later time (t=40),
the pressure distribution becomes progressively more hydrostatic.
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The w velocity contours (Figure 22(c) and (d)) show an intense gradient as the jet
approaches the bottom wall (see Figure 22(c)), and that this gradient is considerably reduced
as the box is filled by the fluid (Figure 22(d)). The regions of intense deceleration in the w
contours are well correlated with the regions of larger deviation of the pressure distribution
from the hydrostatic, as expected.

The u velocity contours (Figure 22(e) and (f)) show the region of high horizontal velocity in
a region circumferentially around the impact zone. These high horizontal velocities, so close to
the bottom wall, will be responsible for a high shear stress at the wall in this region at early
times, as we shall see below.

The distribution of total shear stress and pressure at the bottom wall is shown in Figure 23.
Figure 23(a) and (b) show the shear stress magnitude at the bottom wall (�z=��xz

2 +�yz
2 ) and

pressure p along lines x=2, z=0 and y=2, z=0, i.e. at the bottom wall, along two
perpendicular lines passing through the centre of the box, at various times (t=5,10, 20, 40,
60). Since the flow is symmetric under a rotation of �/2, the curves relative to the two lines
would appear to match perfectly and differences are not visible, save for the curves of pressure
p at t=40, where a small deviation is perceptible. This fact demonstrates that the boundary

Figure 21. Time evolution of (a) non-dimensional fluid volume (analytical and numerical); (b) relative
volume error (%); (c) non-dimensional fluid surface area; (d) required memory (MBytes).
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Figure 22. Contour plots of: (a) and (b) non-dimensional pressure, p. Non-dimensional velocity compo-
nents (c) and (d) w, and (e) �. Plane x=2, at times t=20 (left) and t=40 (right). Contour values are:
(a) 0, 0.1, . . . , 0.6; (b) 0, 0.1, . . . , 0.4; (c) −1.0, −0.9, . . . , 0.1; (d) −1.0, −0.9, . . . , 0.1; (e) −0.3,

−0.25, . . . , 0.3; (f) −0.2, −0.15, . . . , 0.15.
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Figure 23. Contour plots of: (a) and (b) non-dimensional pressure, p, and non-dimensional velocity
components (c) and (d) w, and (e) and (f) � at plane x=2, at times t=20 (left) and t=40 (right).
Contour values are: (a) 0, 0.1, . . . , 0.6; (b) 0, 0.1, . . . , 0.4; (c) −1.0, −0.9, . . . , 0.1; (d) −1.0,

−0.9, . . . , 0.1; (e) −0.3, −0.25, . . . , 0.3; (f) −0.2, −0.15, . . . , 0.15.
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conditions at the walls and free surface, as well as the numerical scheme employed in the
discretizations, have been correctly implemented at least as regards symmetry.

On the one hand, Figure 23(a), together with the contour plots of Figure 23(c) and (e), show
that �z is high in a region around the impact zone, as we might expect from observing the �
component of velocity in Figure 22(e) and (f). The maximum magnitude decreases with time,
as the container gets filled. On the other hand, Figure 23(b), together with contour plots of Figure
21(d) and (f), show the maximum pressure occurs at the centre of the jet impact zone, as we
would expect from a momentum conservation argument, and this maximum decreases relative
to the average value at every time, but the average pressure increases as the container is filled,
reaching at later times (t=60) an almost uniform value at the bottom wall, which is consistent
with an almost hydrostatic pressure distribution.

Figure 24(a), (c) and (d) give a detailed description of the shear stress at the bottom wall.
Shear stress components �xz and �yz are perfectly symmetrical under a �/2 rotation. Therefore,
only the �xz component is shown. Additionally, the normal shear stress �zz is also shown. The
time evolution of �xz follows the same trend as �z, with maximum amplitudes decreasing with
time. In this case we can distinguish antisymmetric regions, with respect to the plane y=2, of
positive (at right) and negative (at left) shear.

The normal viscous stress has a behaviour similar to the pressure (with sign reversed), far from
the free surface as can be seen in Figure 25(b), (d) and (f). However, at the point of contact
of the free surface with the wall, where strong velocity gradients are present, there are relatively
large peaks of normal viscous stress.

Figure 26 shows the time evolution of the shear stress and pressure at the side walls. Because
of the �/2 rotational symmetry, only the y=0 wall is shown. Both components, �xy and �yz are
depicted in Figure 26(a), but �xy is almost negligibly close to the plane x=2. At all times, the
shear stress has a maximum at the free surface, and decreases monotonically to zero towards
the bottom wall. The variation of the shear stress is remarkably steep close to the free surface,
and hence there is a very narrow region close to the point of contact of the free surface with
the wall where there are strong shear stresses.

The pressure distribution along the wall resembles an hydrostatic pressure distribution, but
the pressure gradient is not quite constant, as the flow never reaches a steady state due to the
in-flowing fluid.

Table I summarizes some quantitative results for the three examples of container filling
presented in this paper. For each example, Table I gives the final simulation time (tf), the final
volume (volN(tf) obtained in the simulation, the analytical volume (volA), the per cent relative
volume error (Evol(tf)) and the final surface area (St f

), nozzle area and memory requirements.
As we can see in Table I, the relative error of the final volume is small for all the examples.
The larger error for the rectangular tub was due to the narrow nozzle (only four cells across
it) and the very long simulation time.

8. CONVERGENCE RESULTS AND COMPARISON WITH EXPERIMENTS

In order to assess the convergence of the procedure presented in Section 3, we apply it to a
sequence of refined meshes. Consider a sequence of refined grids, with grid spacing given by
h1, h2, h3, . . . such that hi+1=�hi with 0���1, equally spaced (i.e. �x=�y=�z).
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Figure 24. (a) Non-dimensionalshear stress magnitude at the bottom wall (�z=��xz
2 +�yz

2 ) and (b)
pressure p along lines x=2, z=0, at times t=5, 10, 20, 40, 60. Contour plots (c) and (e) of �z at times
t=20 and t=40. Idem, contours of pressure (d) and (f). Contour values are given by: (c) 0.0, 0.02, . . . ,

0.14; (d) 0.05, 0.1, . . . , 0.65; (e) 0.01, 0.02, . . . , 0.04; (f) 0.32, 0.34, . . . , 0.44.
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Figure 25. (a) Shear stress component �xz at the bottom wall and (b) normal stress component �zz along
lines x=2, z=0, and y=2, z=0, at times t=5, 10, 20, 40, 60. Contour plots (c) and (e) of �xz at times
t=20 and t=40. Idem, contours of �zz (d) and (f). Contour values are given by: (c) −0.14,
−0.012, . . . , 0.14; (d) −0.045, −0.04, . . . , 0.005; (e) −0.04, −0.03, . . . , 0.04; (f) −0.01,

−0.008, . . . , 0.0.
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Figure 26. (a) Non-dimensional shear stress components �yz and �xy at the side wall and (b) non-dimen-
sional pressure p at the side wall, along lines x=2 and y=0, at times t=20, 40, 60. Contour plots (c)
and (e) of �yz at times t=20 and t=40. Idem, contours of p (d) and (f). Contour values are given by:

(c) −0.04, −0.02, . . . , 0.0; (d) 0.0, 0.02, . . . , 0.12; (e) 0.0, 0.02, . . . , 0.06; (f) 0.05, 0.10, . . . , 0.3.
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Table I. Some quantitative results for the three examples shown.

volN(tf)tf MemoryExample Nozzle areaSt f
�Evol(tf)�volA

(Mbytes)

Cubic 60.0 52.022 52.267 0.470 219.001 0.871 171
Trapezoidal 18.75 123.829 124.003 0.140 218.476 6.613 127

25211.3822569.56Rectangular 1.6001422.7471399.97125.0

Let us assume that the order of convergence n of the method is asymptotically given by

uhi
(x, t)−u(x, t)=Chi

n (51)

where C is constant vector independent of h. Thus, we can write

�(u)hi
� ��uhi

(x, t)−uhi+1
(x, t)��2= ��C��2hi

n(1−�n) (52)

Combining the above expression for �(u)hi
and �(u)hi+1

we obtain

�(u)hi

�(u)hi+1

�
��uhi

(x, t)−uhi+1
(x, t)��2

��uhi+1
(x, t)−uhi+2

(x, t)��2
=�−n (53)

Hence, using three meshes in the sequence hi, hi+1, hi+2, we can obtain an estimate of the
order of convergence of the method

n= −
log

� �(u)hi

�(u)hi+1

n
log(�)

(54)

We have performed four runs with nested grids (�=1/2), which we call Grid I, II, III and IV
respectively, on a test problem. We considered the filling of the rectangular container (see
Figure 14) with dimensions L1=L2=L3=30/8L, using a square nozzle of dimension L. The
Reynolds number based on the nozzle dimension and injection velocity is Re=10, and the
Froude number is Fr=3.5696. We have computed the L2-norms of the differences between
successive grids, at the time t=4.687. The results are summarized in Table II.

Table II. L2-norms

� puwu

0.002499636�1 0.001131732 0.001072174 0.003327085
0.001088048 0.0016562080.000612741�2 0.000618884

0.000347374 0.000515070�3 0.0007880940.000357658
1.079837420 1.006374677n1 0.870791249 0.807188978 1.199975297

0.818787812 1.078901484 0.959130315n2 1.0714448970.791087094
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Figure 27. (a) Comparison of the free surface position on grids I–IV at the symmetry plane y–z ;
(b) blow-up of the free surface near the bottom wall.

Note that the variations �i decrease as the grid is refined, by a ratio close to 1/2, which
suggests a convergence rate of order 1. Indeed, the computed values for the convergence rate
obtained from Equation (54) are 1.079837420 for the velocity and 1.006374677 for the pressure
using grids I, II and III, whereas for grids II, III and IV they are 0.959130315 and 1.071444897
respectively. The free surface convergence for grids I to IV is shown in Figure 27, where a
two-dimensional cut of the surface is shown at t=4.687, at the symmetry plane x–y. A
blow-up of the free surface near the bottom wall is displayed in Figure 27(b).

To further demonstrate the convergence of the numerical method presented in this paper we
have compared the output of Freeflow-3D to the experiments performed by Unilever Research
on container filling problems (see Tomé et al. [59]). Although the experiments were constructed
to validate the two-dimensional code GENSMAC [12], they can be used to compare the
three-dimensional output of Freeflow-3D. Indeed, Figure 28 displays the output of Freeflow-
3D together with a experiment performed by Unilever on container filling. The data for this
run were obtained from Tomé et al. [59], i.e. the container and nozzle dimensions used were
the same as those employed by Unilever Research. The Reynolds number for this problem is
Re=2.5 and the Froude number is Fr=2.2576. As can be seen in Figure 28, there is good
agreement between the experimental and the numerical output. We believe that the main
differences are due to the fact that the nozzle employed in the experiments had rounded
corners.

9. CONCLUDING REMARKS

This paper has been concerned with the construction of a working finite difference code for
three-dimensional fluid flow with a free surface or free surfaces. It has primarily dealt with the
details of the finite difference stencils that were implemented. After writing down the governing
equations and boundary conditions, the numerical procedure was presented. This involved the
explicit solution of the momentum equations, cell flagging, a time stepping routine and the
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Figure 28. Comparison between numerical (left) and experimental (right). Input data are: D=5 mm,
U=0.5 m s−1 and �=0.001 m2 s−1—Re=2.5.
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solution of a discrete Poisson equation for a corrected velocity potential, which then allows the
divergence of the velocity to be properly satisfied. Marker particles were employed to define
the free surface. In GENSMAC these virtual particles were used to define the bulk fluid and
thereby its free surface. In this code only marker particles on the fluid surface were used,
leading to substantial computational savings. Using these marker particles the free surface was
then constructed from local planar surfaces using quadrilaterals and triangles. The full free
surface stress conditions were approximated by considering planar surfaces, which were local
to individual cells and were allowed to be either parallel to a co-ordinate axis, or at 45° or at
60°, giving rise to a great many combinations. It has been found that accurate approximation
of the free surface stress conditions is crucial to the algorithm—if these conditions are not
sufficiently accurately imposed stability problems can result—and this paper has concentrated
on their derivation. The method has been shown to be able to deal with curved boundaries and
a discussion on the methodology was provided. Although not directly illustrated in this paper,
the ideas were necessary in the derivation of the boundary conditions on the skewed walls of
the container shown in Figure 18.

This paper has concluded with two illustrative simulations: container filling and jet buckling.
By interfacing the basic code with a solid modelling code (written in C by the authors) output
was provided in the form of realistic three-dimensional pictures, which are normally concate-
nated to make a video sequence for presentation. These pictures, especially when compared
with our early experimental work [59], give us confidence of the correctness of the code. In
Section 7.3, a number of quantitative experiments were presented with the aim of validating
the code. The volume of fluid injected was compared with the exact value, which showed very
good agreement. Pressure and velocity contour plots on several planes were also presented.
The convergence of the method was investigated and a convergence rate of order one was
suggested. This demonstrated the grid independence of the method.
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52. Tomé MF, Castelo A, Cuminato JA, McKee S. GENSMAC3D: implementation of the Navier–Stokes equations

and boundary conditions for 3D free surface flows. Universidade de São Paulo, Departamento de Ciência de
Computação e Estatı́stica, Notas do ICMSC no. 29, 1996.
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